首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   14篇
  国内免费   6篇
测绘学   9篇
大气科学   10篇
地球物理   43篇
地质学   122篇
海洋学   8篇
天文学   24篇
综合类   3篇
自然地理   5篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   10篇
  2019年   10篇
  2018年   15篇
  2017年   25篇
  2016年   16篇
  2015年   12篇
  2014年   20篇
  2013年   26篇
  2012年   9篇
  2011年   11篇
  2010年   11篇
  2009年   10篇
  2008年   5篇
  2007年   3篇
  2006年   11篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1969年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
41.
Abstract– Six large iron meteorites have been discovered in the Meridiani Planum region of Mars by the Mars Exploration Rover Opportunity in a nearly 25 km‐long traverse. Herein, we review and synthesize the available data to propose that the discovery and characteristics of the six meteorites could be explained as the result of their impact into a soft and wet surface, sometime during the Noachian or the Hesperian, subsequently to be exposed at the Martian surface through differential erosion. As recorded by its sediments and chemical deposits, Meridiani has been interpreted to have undergone a watery past, including a shallow sea, a playa, an environment of fluctuating ground water, and/or an icy landscape. Meteorites could have been encased upon impact and/or subsequently buried, and kept underground for a long time, shielded from the atmosphere. The meteorites apparently underwent significant chemical weathering due to aqueous alteration, as indicated by cavernous features that suggest differential acidic corrosion removing less resistant material and softer inclusions. During the Amazonian, the almost complete disappearance of surface water and desiccation of the landscape, followed by induration of the sediments and subsequent differential erosion and degradation of Meridiani sediments, including at least 10–80 m of deflation in the last 3–3.5 Gy, would have exposed the buried meteorites. We conclude that the iron meteorites support the hypothesis that Mars once had a denser atmosphere and considerable amounts of water and/or water ice at and/or near the surface.  相似文献   
42.
Uplift response of symmetrical anchor plates with and without grid fixed reinforced (GFR) reinforcement was evaluated in model tests and numerical simulations by Plaxis. Many variations of reinforcement layers were used to reinforce the sandy soil over symmetrical anchor plates. In the current research, different factors such as relative density of sand, embedment ratios, and various GFR parameters including size, number of layers, and the proximity of the layer to the symmetrical anchor plate were investigated in a scale model. The failure mechanism and the associated rupture surface were observed and evaluated. GFR, a tied up system made of fiber reinforcement polymer (FRP) strips and end balls, was connected to the geosynthetic material and anchored into the soil. Test results showed that using GFR reinforcement significantly improved the uplift capacity of anchor plates. It was found that the inclusion of one layer of GFR, which rested directly on the top of the anchor plate, was more effective in enhancing the anchor capacity itself than other methods. It was found that by including GFR the uplift response was improved by 29%. Multi layers of GFR proved more effective in enhancing the uplift capacity than a single GFR reinforcement. This is due to the additional anchorage provided by the GFR at each level of reinforcement. In general, the results show that the uplift capacity of symmetrical anchor plates in loose and dense sand can be significantly increased by the inclusion of GFR. It was also observed that the inclusion of GFR reduced the requirement for a large L/D ratio to achieve the required uplift capacity. The laboratory and numerical analysis results are found to be in agreement in terms of breakout factor and failure mechanism pattern.  相似文献   
43.
Abstract– The oxygen fugacities recorded in the nakhlites Nakhla, Yamato‐000593 (Y‐000593), Lafayette, and NWA998 were studied by applying the Fe,Ti‐oxide oxybarometer. Oxygen fugacities obtained cluster closely around the FMQ (Fayalite–Magnetite–Quartz) buffer (NWA998 = FMQ ? 0.8; Y‐000593 = FMQ ? 0.7; Nakhla = FMQ; Lafayette = FMQ + 0.1). The corresponding equilibration temperatures are 810 °C for Nakhla and Y‐000593, 780 °C for Lafayette and 710 °C for NWA998. All nakhlites record oxygen fugacities significantly higher and with a tighter range than those determined for Martian basalts, i.e., shergottites whose oxygen fugacities vary from FMQ ? 1 to FMQ ? 4. It has been known for some time that nakhlites are different from other Martian meteorites in chemistry, mineralogy, and crystallization age. The present study adds oxygen fugacity to this list of differences. The comparatively large variation in fO2 recorded by shergottites was interpreted by Herd et al. (2002) as reflecting variable degrees of contamination with crustal fluids that would also carry a light rare earth element (REE)‐enriched component. The high oxygen fugacities and the large light REE enrichment of nakhlites fit qualitatively in this model. In detail, however, it is found that the inferred contaminating phase in nakhlites must have been different from those in shergottites. This is supported by unique 182W/184W and 142Nd/144Nd ratios in nakhlites, which are distinct from other Martian meteorites. It is likely that the differences in fO2 between nakhlites and other Martian meteorites were established very early in the history of Mars. Parental trace element rich and trace element poor regions (reservoirs) of Mars mantle ( Brandon et al. 2000 ) must have been kept isolated throughout Martian history. Our results further show significant differences in closure temperature among the different nakhlites. The observed range in equilibration temperatures together with similar fO2 values is attributable to crystallization of nakhlites in the same cumulate pile or lava layer at different burial depths from 0.5 to 30 m below the Martian surface in agreement with Mikouchi et al. (2003) and is further confirmed by similar crystallization ages of about 1.3 Ga ago (e.g., Misawa et al. 2003 ).  相似文献   
44.
The Mackenzie River Basin (MRB) in NW Canada is one of the least human-impacted large watersheds in the world. The western and eastern sub-basins of the MRB are also marked by contrasting geology, geomorphology, hydrology, and biology. These remarkable differences in a remote river basin provide a unique opportunity to probe the biogeochemical processes governing the sources, transport, and bioavailability of Hg at the terrestrial-marine interface and ultimately in the Arctic Ocean. Based on a large dataset of the concentration and speciation of Hg, S and organic matter in surface sediments across the MRB, a source-apportioned budget was constructed for Hg in the MRB. The results indicate that the Hg flux in the basin originates primarily from the weathering of sulfide minerals in the western mountainous sub-basin (∼78% of the total), followed by the erosion of coal deposits along the mainstream of the Mackenzie River (∼10%), with the remainder split between atmospheric inputs and organic matter-bound Hg (6% and 5%, respectively). Although the Hg flux from the eastern peatland sub-basin only accounts for ∼10% of the total riverine Hg flux, Hg in this region correlates strongly with labile organic matter, and will likely have a much stronger influence on local biota.  相似文献   
45.
The Sfax Basin in eastern Tunisia is bounded to the east by the Mediterranean Sea. Thermal waters of the Sfax area have measured temperatures of 23–36°C, and electrical conductivities of 3,200 and 14,980 μS/cm. Most of the thermal waters are characterized as Na–Cl type although there are a few Na–SO4–Cl waters. They issue from Miocene units which are made up sands and sandstones interbedded with clay. The Quaternary sediments cap the system. The heat source is high geothermal gradient which are determined downhole temperature measurements caused by graben tectonics of the area. The results of mineral equilibrium modeling indicate that the thermal waters of the Sfax Basin are undersaturated with respect to gypsum, anhydrite and fluorite, oversaturated with respect to kaolinite, dolomite, calcite, microcline, quartz, chalcedony, and muscovite. Assessments from various chemical geothermometers, Na–K–Mg ternary and mineral equilibrium diagrams suggest that the reservoir temperature of the Sfax area can reach up to 120°C. According to δ18O and δ2H values, all thermal and cold groundwater is of meteoric origin.  相似文献   
46.
A review and analysis of post-stack time-lapse time-shifts has been carried out that covers published literature supplemented by in-house datasets available to the authors. Time-shift data are classified into those originating from geomechanical effects and those due to fluid saturation changes. From these data, conclusions are drawn regarding the effectiveness of post-stack time-shifts for overburden and reservoir monitoring purposes. A variety of field examples are shown that display the range and magnitude of variation for each class of application. The underlying physical mechanisms creating these time-shifts are then described, and linked to a series of generic and field-specific rock physics calculations that predict their magnitudes. These calculations serve as a guide for practitioners wishing to utilize this information on their own datasets. Conclusions are drawn regarding the reliability of this attribute for monitoring purposes, and the extent to which further development is required and how it should be reported by authors.  相似文献   
47.
A closed-form analytical computation of groundwater travel time (GWTT) for two-layer oceanic small island aquifers is developed assuming steady-state and sharp-interface conditions. The two-layer geology impacts on the GWTT are investigated using the developed analytical solution to achieve a greater transparency of such conceptualizations. The results demonstrate that the inclusion of geologic layering leads to large changes in the GWTT. Sensitivity analyses, using specified dimensionless parameters, are employed to assess the influences of hydraulic conductivity, recharge rate, upper layer thickness, and seawater/freshwater density difference parameters, which influence the GWTT. These evaluations reveal that the GWTT is mainly influenced by the recharge rate and the upper layer thickness compared to the other influential parameters when the typical parameter ranges are considered.  相似文献   
48.
49.
针对目前基于机器学习的PM2.5预报模型无法充分利用研究区域内其他相关站点的数据问题,该文提出了一种区域时空点数据的表示方法,并在此基础上提出了基于卷积神经网络的PM2.5预报模型。该模型利用了区域内多站点的历史PM2.5实测数据以及相应的气象预报数据,对区域内任一站点PM2.5浓度进行预报。实验结果显示,该模型在京津冀区域内能对未来至少3d内的PM2.5浓度进行较高精度的预报。与基于单站点的前馈神经网络预报结果对比表明,对区域整体污染及气象状况建模的卷积神经网络模型预报精度更高。该模型对区域内所有站点的预测结果与地面实测值的分布基本一致,表明了该模型具有对区域内PM2.5浓度进行时空预报的能力。  相似文献   
50.
Soil erosion due to surface water is a standout among the serious threat land degradation problem and an hazard environmental destruction. The first stage for every kind of soil conservation planning is recognition of soil erosion status. In this research, the usability of two new techniques remote sensing and geographical information system was assessed to estimate the average annual specific sediments production and the intensity erosion map at two sub-basins of DEZ watershed, southwest of Lorestan Province, Iran, namely Absorkh and Keshvar sub-basins with 19,920 ha, using Modified Pacific Southwest Inter-Agency Committee (MPSIAC) soil erosion model. At the stage of imagery data processing of IRS-P6 satellite, the result showed that an overall accuracy and kappa coefficient were 90.3% and 0.901, respectively, which were considered acceptable or good for imagery data. According to our investigation, the study area can be categorized into three level of severity of erosion: moderate, high, and very high erosion zones. The amount of specific sediments and soil erosion predicted by MPSIAC model was 1374.656 and 2396.574 m3 km?2 year?1, respectively. The areas situated at the center and south parts of the watershed were subjected to significant erosion because of the geology formation and ground cover, while the area at the north parts was relatively less eroded due to intensive land cover. Based on effective of nine factors, the driving factors from high to low impact included: Topography > Land use > Upland erosion > Channel erosion > Climate > Ground cover > Soil > Runoff > Surface geology. The measured sediment yield of the watershed in the hydrometric station (Keshvar station) was approximately 2223.178 m3 km?2 year?1 and comparison of the amount of total sediment yield predicted by model with the measured sediment yield indicated that the MPSIAC model 38% underestimated the observed value of the watershed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号